97 research outputs found

    Flowing ConvNets for Human Pose Estimation in Videos

    Full text link
    The objective of this work is human pose estimation in videos, where multiple frames are available. We investigate a ConvNet architecture that is able to benefit from temporal context by combining information across the multiple frames using optical flow. To this end we propose a network architecture with the following novelties: (i) a deeper network than previously investigated for regressing heatmaps; (ii) spatial fusion layers that learn an implicit spatial model; (iii) optical flow is used to align heatmap predictions from neighbouring frames; and (iv) a final parametric pooling layer which learns to combine the aligned heatmaps into a pooled confidence map. We show that this architecture outperforms a number of others, including one that uses optical flow solely at the input layers, one that regresses joint coordinates directly, and one that predicts heatmaps without spatial fusion. The new architecture outperforms the state of the art by a large margin on three video pose estimation datasets, including the very challenging Poses in the Wild dataset, and outperforms other deep methods that don't use a graphical model on the single-image FLIC benchmark (and also Chen & Yuille and Tompson et al. in the high precision region).Comment: ICCV'1

    RL-LIM: Reinforcement Learning-based Locally Interpretable Modeling

    Full text link
    Understanding black-box machine learning models is important towards their widespread adoption. However, developing globally interpretable models that explain the behavior of the entire model is challenging. An alternative approach is to explain black-box models through explaining individual prediction using a locally interpretable model. In this paper, we propose a novel method for locally interpretable modeling - Reinforcement Learning-based Locally Interpretable Modeling (RL-LIM). RL-LIM employs reinforcement learning to select a small number of samples and distill the black-box model prediction into a low-capacity locally interpretable model. Training is guided with a reward that is obtained directly by measuring agreement of the predictions from the locally interpretable model with the black-box model. RL-LIM near-matches the overall prediction performance of black-box models while yielding human-like interpretability, and significantly outperforms state of the art locally interpretable models in terms of overall prediction performance and fidelity.Comment: 18 pages, 7 figures, 7 table
    • …
    corecore